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I. INTRODUCTION 

It is common engineering knowledge that most mechanical structures 

are designed to tolerate some degree of vibration. The coolant flowing 

through the reactor can produce vibration in the core internals, 

control rods and fuel pins. Therefore, in a nuclear reactor, a large 

number of components are designed to withstand a tolerable degree of 

vibrational behavior, e.g., control rods in PWR are attached to the 

driving mechanism at the top and are free at the other end. Similarly, 

fuel pins are fixed at one end but are allowed clearance at the other 

end. However, this vibration, if excessive, can result in damage to 

the core. 

From the safety point of view, excessive vibration causes a rather 

unique problem. It is difficult to apply conventional measuring 

techniques, i.e., displacement sensor/accelerometers on each component 

because of the hostile core environment and other instrumentation 

difficulties. The situation is aggravated by the fact that even normal 

vibration properties of the individual components cannot be 

investigated in mockup experiments since the same circumstances that 

prevent applications of conventional sensors, i.e. thermal and 

irradiation effects would change vibrational properties of the 

component as well. 

Robinson (1) pointed out that the mechanical vibration of fuel 

elements or control rods is one major source of neutron noise, defined 

as fluctuation of the neutron flux about a mean value. Robinson also 

described a number of sources that affect the neutron density 
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fluctuations in a reactor. The inlet coolant temperature fluctuations 

also contribute to the neutron noise in a reactor (2). The fluctuation 

i n  t h e  n e u t r o n  f l u x  d e n s i t y  c a n  b e  u s e d  t o  i d e n t i f y  m a l f u n c t i o n s ,  e . g . ,  

mechanical vibrations of reactor internals and provide an early warning 

to operators. In an operating power reactor there are many sources of 

noise acting simultaneously, thus making it difficult to extract 

meaningful information regarding a certain driving source without a 

full understanding of the fundamental interactions of each source with 

the neutron field. So far the properties of neutron noise have not 

been used effectively to identify the location of vibrating components. 

Fluctuations of the neutron density due to an oscillating absorber 

rod have been demonstrated experimentally (1,3). In 1948, Weinberg and 

Schweinler (4) showed theoretically that oscillations of an absorber 

would lead to fluctuations of the neutron field in a pile. Further 

interest was generated in the mid '60s, when the effect of excessively 

vibrating control rods was identified in the neutron noise spectra of 

the Oak Ridge Research and High Flux Isotope reactors (1). 

However; the problem of locating or estimating the position of a 

vibrating element and finding its amplitude of vibration is not 

completely solved at this time. It can be shown that a detector can be 

positioned to respond more effectively to noise sources located in a 

specific region of the core. A detector response model based on a 

space and frequency dependent detector adjoint function was developed 
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by H. Van Dam (5), and was shown to describe a detector "field of 

view." Using this model Pazsit (6), explained the basic interactions 

of the "global" and "local" components generated by a vibrating 

element. A "global" component is described as a reproduction of the 

coupled behavior of the neutron field caused by reactivity fluctuations 

produced by the vibrating element whereas a "local" component consists 

of the response as local flux fluctuation caused by its motion. The 

change in the global component through the space dependent transfer 

function is small in the frequency range below the break frequency. 

The local component depends very strongly upon the spatial location of 

the detector and vibrator and the type of motion. This spatial 

dependence of the local effect and its associated phase behavior can be 

used in establishing the location of the disturbance. The phase angle 

is defined as the ratio of the imaginary component to the real 

component of the detector adjoint function and can be obtained by 

solving the frequency dependent detector adjoint function. 

The purpose of this research is to investigate the application of 

the nodal method to solve for the frequency dependent real and 

imaginary components of the detector adjoint functions. The basic 

techniques and the principles used in the nodalization method to 

calculate the static flux, as shown by A. Rohach (7,8) and M. Feiz (9), 

are used. The two-energy group frequency dependent detector adjoint 

functions presented by complex equations are expanded into real and 

imaginary parts as suggested by Van Dam (5) and are solved treating 
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them as standard four-energy group equations. 

The method is based upon expansion of the flux in each node in 

polynomials. The reactor is divided into a number of large nodes. The 

flux and outgoing currents at each surface of the node are dependent on 

the average properties of the node and the incoming currents (10). 

As a first step, a one-dimensional two-energy group model was 

developed. The phase angle and the magnitude of the detector adjoint 

function were calculated for a detector located in the middle of the 

south core tank of the Iowa State University UTR-10 reactor. Results 

were compared with the analytical solution developed by Al-Ammar (11). 

Next, a two-dimensional one energy group model was developed. The 

phase angle and the magnitude of the detector adjoint function were 

calculated for the detector located in the center of a 200 cm x 200 cm 

homogenous subcritical reactor. The magnitude of the detector adjoint 

function was compared with the results from the EXTERMINATOR (12) 

computer code as well as the analytical solution (13). For this model, 

typical one-energy group cross sections from Duderstadt and Hamilton 

(14) were used. 

In the third phase of the research, a two-dimensional two-energy 

group model was developed. Attempts to develop an analytical solution 

for a homogenous reactor as suggested by Weinberg and Schweinler (4) 

were not successful. A double sine series expansion using the 

classical Green's functions solution was developed. It was found that 

a large number of terms in the series were required for convergence. 
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and in some cases (near the source) convergence was not possible for 

even a very large number of terms. The result seems to follow the 

expected behavior of the Green's functions, however. Also, the phase 

angle varied within the expected range for the given frequency (15). 
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II. LITERATURE SURVEY 

A vibrating control rod or other core component in the neutron 

field causes fluctuations in the neutron population commonly called 

neutron noise. This noise is interpreted in terms of the standard 

noise analysis functions; namely the auto power spectral density 

(ASPD), cross-power spectral density (CPSD), etc. The application of 

neutron noise analysis involves the interpretation of the fluctuating 

components of incore or excore neutron detector signals as an aid in 

identifying and locating the vibrating reactor core components. One of 

the early uses of neutron noise analysis was that described by 

Stephenson et al. (2). In 1965, Stephenson et al. (2) detected a peak 

in a neutron detector's power spectra caused by an excessively 

vibrating control rod. The peak disappeared when the faulty rod 

mechanism was replaced. A number of experiments have been carried out 

supporting the basic conclusion by Robinson (1) and Kosaly and Williams 

(16) among others, that changes in the reactor parameters cause the 

fluctuation in the neutron density. 

An early and sophisticated treatment was given by Weinberg and 

Schweinler (4) in their classical paper about the theory of an 

oscillating absorber in a neutron field. The concept of a local and 

global component of the fluctuating flux was also presented in this 

paper. They showed that an absorber oscillating in a flux gradient at 
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a frequency below the periods of delayed neutrons or break frequency of 

the reactivity transfer function, produced both fluctuations in the 

flux fundamental mode, or global component, and fluctuations in the 

neutron field in the region nearby the absorber, or local component. 

They pointed out that the reactivity response varied at different 

frequencies of oscillation. 

The frequency dependent response of a neutron detector to a  ̂

vibrating neutron absorber was also demonstrated by Pazsit (17). He 

developed a one- and a two-group reactor model based on diffusion 

theory to demonstrate the spatial sensitivity of the response to 

detector and vibration source placement. Pazsit and Analytis (13) 

developed a two-dimensional reactor model to study the neutron noise 

generated by a vibrating absorber having two components of motion. 

Analytis (18) investigated the neutron noise resulting from 

fluctuations in the group constants with application to vibration and 

density perturbations. 

Van Dam (5) extended the concept of the detector adjoint 

formulation to the frequency domain and provided a basis for modeling 

the response of a neutron detector to the fluctuations of core 

parameters. In this work, he also explained that in the plateau 

region of the reactor frequency response (A < « < fi/X), the 

detector adjoint function is approximately real. 

Lee and Albrecht (19,20) studied the frequency response 

characteristic of the neutron field to a vibrating control rod. They 

developed the complex equations for a two-dimensional two-group 
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cylindrical model of a pressurized water reactor. They proposed a 

vibration localization technique based on the intersection of 

"detector response contours." To obtain the desired intersection, a 

scaling factor related to the rms amplitude of the vibration is used. 

Pazsit and Glocker (21,22) investigated the localization problem 

for a vibrating control rod having two-dimensional periodic motion or 

stochastic motion. For the case of stochastic vibration an expression 

for the CPSD of the two components of motion was developed. They 

proposed a model to find an approximate location of the vibrating 

source by obtaining the intersection of roots of "localization 

equations" obtained using the measurements from three detectors. The 

model was based on a one-energy group, two-dimensional, bare, 

cylindrical reactor. 

In addition to these investigations, extensive research work has 

been carried out at Iowa State University in the development of 

detector response models primarily based on the university's UTR-10 

reactor. Huang and Danofsky (23) studied the changes in response of a 

neutron detector with separation distance from a noise source 

consisting of a small plexiglass container of water with air bubbling 

through it. They developed a three-dimensional two-energy group model 

for real detector adjoint functions. Good agreement was found between 

the model and the measurement. 

Hennessy (24) developed a two-dimensional, two-energy group model 

of the reactor response to a moving neutron absorber using a Green's 
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function formulation. Experimental measurements supported the observed 

change in the ASPD of detector signals as a function of location 

relative to the vibration source, and supported the general results 

predicted by the model. In this work the detector response was assumed 

to be real. 

Al-Ammar (11) and Al-Ammar and Danofsky (25) developed a complex 

two-energy group one-dimensional formulation of the detector adjoint 

system to study the effect of detector and vibrator location on the 

detector response. They placed a vibrating absorber in the center of 

the UTR-10 reactor and performed measurements to estimate the local and 

global components of the response of the moving detector. The 

vibration system used was limited in response due to flexing of the 

moving absorber rod. Borland (26) improved this system and further 

confirmed the global-local interpretation of the auto power spectral 

densities of the detector signal. 

Sankoorikal (27) proposed a technique of localizing a vibration 

source based on the maximum likelihood function and confidence set 

estimation method. In this technique, the theoretical detector 

responses are combined with the measured detector responses to yield 

point estimates of vibrator position and intensity and confidence 

regions. In application, the amplitude characteristics are determined 

within an unknown scaling constant; however, the estimated relative 

amplitude of vibration can serve as a measure of change in the 

vibration amplitude in trending studies. 
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The EXTERMINATOR (12) code developed by Oak Ridge National 

Laboratory can be used to calculate the detector adjoint function at a 

particular location. However, a convergence problem was encountered 

when EXTERMINATOR was used to calculate the real and imaginary 

components of the detector adjoint function. 

In general, the imaginary part of the detector adjoint function has 

been ignored on the basis that its magnitude is small compared to the 

real part in the plateau region of the reactor frequency response 

(X < <0 < (5) . 

The purpose of this work is to investigate an application of a 

nodal technique to solve for the real and imaginary components of the 

detector adjoint function as a function of position in the core. As 

suggested by Van Dam (5), an N-neutron energy group diffusion equation 

formulation is expanded into 2N diffusion equations in the real and 

imaginary parts of the detector adjoint function. These equations are 

solved using the nodal technique. The nodal technique has been 

developed by A. Rohach (7,8) to perform multigroup one-dimensional and 

two-dimensional eigenvalue calculations. For this research, detector 

adjoint function and static flux calculations are limited to two-energy 

groups of neutron, i.e., fast and thermal. The nodal method is based 

upon expansion of the flux in terms of polynomials. In this technique 

a two-dimensional reactor is divided into a number of large nodes and 

the flux or the detector adjoint function in each node is expressed by 

a set of polynomials. The average flux and outgoing currents at each 
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surface of the node are functions of the properties within the volume 

and the current entering the node. The average flux and average net 

current on the interface are developed as continuous functions in the 

model. 
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III. DEVELOPMENT OF GREEN'S FUNCTION 

A. General Formulation of Green's Function 

In this section the frequency dependent detector adjoint equations 

are developed from the diffusion equations. The diffusion equations, 

including delayed neutrons, expressed in matrix form can be presented 

as follows : 

L(r,E,t) 4(r,E,t) - 0 3.1 

where 

L - Space, energy and time dependent diffusion operator 

<f) - Flux and precursor vector 

r - Space vector 

t - Time domain 

E - Neutron energy 

As shown by Van Dam (5), introducing a perturbation 5L in the 

diffusion operator in equation (3.1), canceling out the steady state 

terms and taking the Fourier Transform of the resulting equation, 

equation (3.1) transforms to the form 

L(r,w)&̂ (r,w) - 5L(r,w)̂ (r) 3.2 

where f̂ (r,w) is the Fourier Transform of the fluctuation in the 

neutron flux due to a perturbation in the diffusion operator, and <̂ (r) 

is the steady state flux. The variable E, has been dropped for the 

purpose of this text as it has no impact on the derivation of the 

Green's function. In this work, perturbations are assumed to be in 
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only the absorption cross section. The term S(f)SL will be very 

small compared to other terms in the equation and is assumed to be 

negligible. 

From the definition of the adjoint operator, equation (3.2) yields 

where 
— <5̂ ,L Ç> 

L (r,w)$(r,w) - S (r,u) 
a 

3.3 

3.4 

 ̂is called the detector adjoint function and represents the field of 

view of a detector having the group cross sections and L"*" is the 

adjoint operator. Upon taking the inner product of $ with 

equation (3.2) and S<f> with equation (3.4) and comparing the resultant 

equations with equation (3.3) yields 

<6L(r,w)̂ (r),*(r,w)> - <ĝ (r,w),Z (r,w)> 
d 

3.5a 

The term on the right side in equation (3.5a) represents the 

response of a neutron detector to the fluctuations. Equation (3.5a), 

using the integral representation, can be written as 

J [5L(r,w)̂ (r)]̂ »(r,w)dr - 5(̂ (̂r,w)S (r,w)dr 

r 

3.5b 

Equation (3.5b) is reduced to calculate the detector response, dR, to a 

perturbation located anywhere in the core as follows (11,13): 

dR(r ,r ,w) - 7 
d p 

 ̂ a$(ra,r,w) 

r-r. 

 ̂  ̂ a*(r) 
+ *(r ,r ,w) _ 

P ar r=r. 

e ( w )  3.6 



www.manaraa.com

14 

where 

(H-oo 
6 (w) — e(t)e dt 

and the subscripts d and p indicate the detector and the absorber 

positions respectively and e(t) is the absorber amplitude of motion. 

The term 7 is an absorber factor characterizing the strength of the 

absorber. In the development of equation (3.6), second and higher 

order terms in the Taylor's series are dropped, therefore equation 

—f 
(3.6) is valid only for a weak absorber. Once *(r,w) is determined by 

solving equation (3.4), the detector response, dR, can be calculated 

using equation (3.6). 

In this work $(r,w) was determined by solving equation (3.4) using 

the polynomial nodal model. The polynomial nodal model was also used 

in determining the static flux, 4. The adjoint function, and the 

static flux, were obtained in the form of a polynomial as a function 

of position as shown in Chapter IV. Using these two functions, the 

detector response, dR, was calculated from equation (3.6). 

In two-dimensional rectangular coordinates, equation (3.6) can be 

expressed as follows (13): 

dR(Xd,Xp,yd,yp.w) -

(̂x̂ ,x,ŷ ,y,w) 
a (̂x,y) 3̂ (xjj,x,y,j,y,w) 

+ «̂ (x.y) 
ax ax 

fx(w) 

X-Xp.y-Yp 

Vi(x̂ ,x,ŷ ,y,w) 
â (x,y) â (xa,x,ya,y,w) 

+ ̂ (x,y) 
ay ax 

Jy(w) 3.7 

x-Xp,y-yp 
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where and are the coordinates of the perturbation point and 5x(w) 

and 5y(w) are the Fourier Transforms of the x and y components of the 

vibrator motion. The value of 7 is constant and is assumed to be unity 

for normalization purpose. Equation (3,7) was used in the computer 

code GPLOT to calculate the detector response. 

B. One-Energy Group Diffusion Theory Model 

The steady state one energy group diffusion equation is 

2 ''̂ f 
DV (j) - " 0. 3.8 

where 

D - Diffusion coefficient 

- Absorption cross section 

V — Number of neutrons produced per fission 

Zg - Fission cross section 

<f> - Flux 

Equation (3.8) was used in a one-energy group computer code to 

calculate the eigenvalue, K, and the static flux, <t>. 

The general one-energy group and one delayed group equations in the 

time domain, are given by 

DV ̂  - S ̂  + (l-)9)i'S ̂  + AC — — — 3.9 
a f V at 

3C 
PvTi (f> - AC — —— 3.10 

f ot 
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where 

V - Average neutron velocity 

A - Decay constant 

C - Precursor concentration 

y9 - Delayed neutron fraction 

Equation (3.9) and (3.10) are the one-energy group approximations of 

equation (3.1). 

The changes in </> and C assuming the absorption cross section is 

the only parameter affected by the vibration, is given by 

where the superscript o indicates steady state values. 

Substituting equations (3.11a) to (3.11c) into equations (3.9) and 

(3.10) and canceling the steady state terms yields 

S - + 5S 3.11a 
a a a 

(ft — + s<f> 3.11b 

C - C° + fC 3.11c 

a a f V  St 
3.12 

dSC 
84> - XSC — ' 
f at 

3.13 

The term will be very small compared to the rest of the 

terms and is assumed to be negligible. 
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Application of the Fourier Transform to equations (3.12) and (3.13) 

yield, upon elimination of the precursor term, 

2 o iuâ Cl) o 
DV ùk<j> - Z + yZ (1 - ——)Â  - i—Â  — <i> 5S 3.14 

a f j w+A V a 

where Â  is the Fourier Transform of 5̂ . Equation (3.14) is the 

one-energy group approximation of equation (3.2). For the one-group 

case, the detector adjoint function, $, will be the same as Â . 

Therefore, equation (3.14) in terms of the detector adjoint function, 

Ç, will be 

2 o i w o 
DV $ - Z $ + yZI/l - -7=̂ )® - j-$ - ̂  5Z 3.15 

a f V a 

The detector adjoint function, $, is complex and mathematically 

can be expressed in terms of a real and an imaginary component as 

follows : 

 ̂~ + jx 3.16 

where 

 ̂ - Real part of $ 

X - Imaginary part of # 

Substituting the real and imaginary parts of $ in equation (3.15) and 

collecting the real and imaginary terms will result in the following 

set of equations : 

2 
7 if) + aTp + fix " f(x-x )g(y-y ) 3.17 

d. a 

2 
V X - + ax - 0 3.18 
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where 

a = —[ - Z + i/S (1 
D a f 

• ) ]  

The coordinates (x̂ j.ŷ ) indicate the detector location. 

Equation (3.17) is a non-homogenous equation and can be solved by 

applying the Green's function technique, subject to the usual free 

surface boundary conditions and the continuity of the adjoint currents 

at region interfaces plus the usual Green's function boundary 

conditions at the detector, namely 

•̂(x.cd) 

X (x, w )  

ax(x,w) 

Sx 

â (x,«) 

 ̂ ax 

X d+0 

X d+0 

(̂x,u) 

X(x,w) 

ax(x,w) 

X 

X d+0 

X d+0 

ax 

aV'(x,w) 

"âx 
D-

d-0 

M - 0  

M - 0  

M - 0  

-1 

3.19a 

3.19b 

3.19c 

3.19d 

Equations (3.17) and (3.18) were used to calculate the detector 

adjoint function, as if these are two-energy group equations. 

The detector response, dR, was calculated using equation (3.7). 

The phase angle, r, was calculated as follows: 

-1 y 
r = tan (-) 3.20 
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C, Development of Analytical Solution 

Comparing equation (3.12) with equation (1) of Pazsit and Analytis 

(13) one has 

2 1 i wfl w 
B(w) - -[ yZ ( 1 - 4̂  ) - Z - j-] 3.21 

D f juH-A a V 

Therefore, equation (3.15) in x and y coordinates is given by 

72$(x,y,xd,yd,w) + B(w)2®(x,y,Xjj,ŷ ,w) 

- 5(x-x̂ )5(y-ŷ ) 3.22 

where x̂ j and ŷ j indicate detector position. 

The detector adjoint function is assumed to vanish at the boundary, 

i.e., 

®(x—0,y—b) — $(x—0,y—0) — 0 3.23a 

#(x-a,y-0) - $(x-a,y-b) - 0 3.23b 

where a and b are the dimensions of the reactor. 

Using the classical Green's function solution, the detector adjoint 

function is expanded in a double summation sine series as follows (28); 

*(x,y,Xd,yd,w) -  ̂Hmn sin(Bnx) sin(Amy) 3.24 
m,n-l 

where 

m:r 

b" 

Equation (3.22) was solved for using the boundary conditions given 

by equations (3.19) and (3.23) and using the properties of the 
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5-function. Therefore, the detector adjoint function can be written in 

a double sine series expansion as (13) 

*(x,y,xd,yd,w) 

4 ̂  sin(B̂ x) sin(BjjXjj) sin(A„,y) sin(Â ŷ ) 

B2 f A2 - B(»)2 ' • " 
n m 

Equation (3.25) is an analytical solution of the detector adjoint 

function for the one-nergy group, two-dimensional homogenous reactor. 

D. Two-Energy Group Diffusion Theory Model 

The steady state two-energy group diffusion equations are 

Vl " =12^1 5^"Zfl^l+ ° 3.26 

DGV ^2^2+ - 0 3.27 

where subscripts 1 and 2 indicate the fast and thermal energy groups 

respectively. Subscript 12 indicates neutron scattering from energy 

group 1 to 2. Equations (3.25) and (3.26) were used in a two-energy 

group computer code to determine the eigenvalue, K, and the static 

flux, (f>. 

The two-energy group neutron diffusion equations and the one-group 

delayed neutron precursor equation, which describe the small stochastic 

fluctuations of the neutron flux induced by small stochastic 
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fluctuations of the thermal absorption cross section parameters, are 

given, in the time domain by 

°i^^^i" Vi " =12^1 + yZggfg) + AC 

1 ̂  

at 
3,28 

2 1 ^̂ 2 
V ̂ 2" =2^2+ =12^1 "^2 âT 3 29 

dC 
''̂ £2̂ 2̂  - AC - 3.30 

Equations (3.28), (3.29) and (3.30) are the two-energy group 

approximation of equation (3.1). The change in parameters, assuming 

the thermal group absorption cross section is the only cross section 

affected by the vibration, is given by 

Zg - 2° + CSg 3.31a 

(f)̂  - <l>̂  + 3.31b 

2̂ ~ ̂ 2 ̂  ̂ 2̂ 3.31c 

C - C° + 5C 3.31d 

where superscript o indicates the steady state parameters. 

Substituting equations (3.31a) to (3.31d) in equations (3.28) and 

(3.29), cancelling steady state terms, applying the Fourier Transform 
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and eliminating the precursor term will result in the following set of 

equations : 

jw 
— — —  0 .  
vi 1 

3.32 

D2V%2- Z°Af2+ " 4*̂ 2 3.33 

where represents the fourier Transform of 5̂ . The term 8<i>S'Z2 is 

very small compared to other terms in the equation and is assumed to be 

negligible. Equations (3.32) and (3.33) are the two-energy group 

approximation of equation (3.2). 

Equations (3.32) and (3.33) can be written in matrix form as 

follows : 

2 o o i B(j} w 
D 7-S-2 + (1-̂ ) -j-

1 12 fl 

12 

joH-A fSr' 

2 w 

Â  

2 2 

3.34 
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Therefore, the adjoint of the equation (3.34) will be as follows; 

2 o o 1 B(ù w 

) 
f2' jw + A 

12 

2 « 

*2*=2 

3.35 

where n̂d ̂ 2 the fast and thermal detector adjoint functions 

respectively and are complex in nature. 

Substituting the real, tJ), and imaginary, %, parts for and $2 

and collecting the real and imaginary terms will result in a set of 

four equations. 

V + *1̂ 2 + «2̂ 2 *3*1 *4*2 ° ° 3.36 

V ̂ "2 + + ̂ 2̂ 2 3̂*1 + ̂ 4*2 " &(x-Xo)&(y-yo) 3.37 

V - «2̂  ̂+ â 2̂ *2*2 ~ ° 3.38 

' X; • - V2 * + V2 " ° 3.39 
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where 

" hi - *2 + 
- ) ]  

1̂2 

*̂ 2 " "57 

°3 

« 4 - 0  

pu>  ̂

„2,,2 

P •» - — 

3̂ • Dg'SfzC „2 ̂  j2 ' 

,8 
4 DgVg 

Equation (3.37) is a non-homogenous equation and can be solved by 

applying the Green's function technique, subject to the usual free 

surface boundary conditions and the continuity of the adjoint currents 

at region interfaces plus the usual Green's function boundary 

conditions at the detector, namely 

Wgfx.w) 

X d+0 

M+0 
WgCx.w) 

M - 0  

M-0 

3.40a 

3.40b 
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8*1(x,w) a*2(x,w) 

dx X d+0 
3x 

3.40c 
X d-0 

3x2(x,«) 3̂ 2(Xiw) 

3x X d+0 
3x 

- 0 3.40d 
X d-0 

3̂ (̂x,w) 

2 3x 
— D 

•*d+0 
2 3x 

— -1 3.40e 
(d-0 

Equations (3.36) to (3.38) were used to calculate the detector adjoint 

functions treating them as the standard four-energy group equations. 

The detector response, dR, is calculated using equation (3.7). 
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IV. COMPUTER NODAL MODEL DEVELOPMENT 

A. Rohach (7) developed the polynomial nodal model technique to 

solve the one-dimensional multi-energy neutron group diffusion 

equations. M. Feiz (9) applied the technique to determine the power 

distribution in an operating reactor. In this technique, the neutron 

flux is expanded in polynomials. A similar one-dimensional two-energy 

neutron group computer code was developed using the nodal model 

technique to solve for the Green's function using the source conditions 

as described in the previous chapter. This computer code is called 

0NED2G. A one-dimensional Green's function for the Iowa State 

University UTR-10 reactor was obtained using the 0NED2G computer code. 

The results obtained with this computer code were compared against the 

analytical solution developed by Al-Ammar (11) and are described in the 

following chapter. 

In the remainder of this chapter, the efforts will be concentrated 

on the development of the two-dimensional polynomial nodal model to 

solve the diffusion equations or Green's function for one or two energy 

neutron groups. 

Rohach (8) used fourth order Legendre Polynomials to approximate 

the flux compared to a straight power series used for this research. 

In the polynomial nodal model the cross sections and diffusion 

coefficients of each node are assigned independently. Two adjacent 

nodes can have different material properties but in any given node 
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the material properties are taken to be homogeneous. Each node is 

treated independently and is connected to adjacent nodes by the 

interface conditions. The flux in each node, for a given energy group, 

is expressed in the form of a fourth order polynominal and is 

approximated as follows: 

where â ^̂  are unknown coefficients of the polynomial and depend upon 

the material properties of the node(i,j). There are fifteen unknown 

coefficients in equation (4.1) but since only fourteen boundary 

conditions were developed, a coefficient a.22 equation (4.1) is 

discarded. Therefore, fourteen conditions are developed for each 

energy group flux to evaluate these fourteen unknown coefficients. 

A. Minimization of the Error in the Flux Approximation 

Since the polynomial solutions are only approximations, one- and 

two-energy group diffusion equations (3,8), (3.26) and (3.27) used in 

an eigenvalue calculation and equations (3.17), (3.18) and equations 

(3.36) to (3.39) used to solve for the detector adjoint function are 

not equal to zero. The function g(x,y) called the residual of the 

diffusion approximation can be expressed as follows. 

4 4-m 
4.1 

4.2 
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The constant a depends upon the material properties of the node and 

is calculated as shown in Chapter III. Subscripts 1 and 2 refer to the 

fast and thermal neutron energy groups respectively. Equation (4.2) in 

a multi-energy group formulation can be written as follow: 

2  ̂
V ̂  + y a <t> - g(x,y) 4.3 

1 0̂ 8 S 

where G is the number of energy groups. 

The fluxes in the second term on the left side of equation (4.3) 

are assumed to be known from a previous iteration in the numerical 

solution and are redefined as ̂  . Therefore, the derivative of 0 with 

respect to any variable will be taken as zero. Redefining the Laplacian 

operator in equation (4.3) as 

2 9% 9% 
 ̂ ( —T + —T )̂ l 4.4 

 ̂ ax̂  dy^ 

and substituting equation 4.1 into (4.4), equation (4.4) yields 

o n 
- 2a2Q + GaggX + 12â QX + Zâ ŷ + Gâ x̂y 

A 
+ 2aQ2 + Gaggy + 12aQ̂ y + 2aĵ 2* + ôâ x̂y 4.5 

A least square minimization of the integrated residual over the 

volume of node(i,j), with respect to the polynomial coefficient; â ^̂  

will be taken as zero to minimize the residual term. 

^̂ mn "'vol 
ĝ (x,y) - 0 4.6 
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By the use of Leibnitz's rule, equation (4.6) will be 

^ j g^x,y)dv - 2J g (x.y)dv - 2 g(x,y) — dv - 0 4.7 
'̂ m̂n J vol J vol ^̂ ran 

and 

I I g(x,y) — dxdy - 0 4.8 
-T) '  -V mn 

B. Development of Conditions for Coefficients 

Each boundary surface of the node is divided into two equal 

segments. The average value of the flux from the property of 

continuity of the flux at the interface of the surface will be applied. 

Therefore, from Figure 4.1 

-
i+l.j 

4, .9a 

- F̂  
i+l.j 

4, .9b 

-
i.j+1 

4, ,9c 

-
i.j+1 

4, ,9d 

-
c. 4, .9e 

"j 
-
Cw 

4, ,9f 

= 4. 9g 

"j 
- 4. 9h 
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(i.j-i) 

(i-l.j) — — — ( i+11 j ) 

[-q.-y] [ r t . - v ]  

w 
o 

Figure 4.1. Nodal geometry for average boundary fluxes 
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Using the polynomial expressions, the average flux is 

f  ^ . , (x ,y)  dy 
•"o 

pRT _ 
ij 

X - »7 

f d. 
•'o 

4.10a 

ri/ 4 4-m 

Jo L £o 'ij'''" 

fa, 
•'o 

m n 

X - ? 
4.10b 

+ â gX + aggX + aggx + â QX 

+ â x̂y + aoiy + aggŷ  + aĝ ŷ  + aĝ ŷ  

+ ai2xŷ  + a21̂ ŷ + ̂ 13*7̂  + a3î x̂ y]dy 4.11a 

*0+ *10% + *20% + *30% + *40% 

1 1 12 14 
+ 2 *11%" + 2 *0l" + 3 *02" + 5 *04" 

2 1 3 1 
+ 2 *21% " + 3 *12%" + 2 *31% "+ 4 *13%" 4.11b 

Similarly, the values of the remaining average fluxes at the interface 

of the node can be evaluated. 

From equations (4.3) and (4.5) 

3g(x,y) 
a a 

- 2 4.12 
20 

ag(x,y) 

da 
- 2x 4.13 

12 
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- 2y 4.14 
3*21 

as'*'?) - 6xy 4.15 
3*31 

'«<*'?) - 12%: 4.16 
3â 0 

*:(='?) - 12/ 4.17 
3*04 

From the above six equations (4.12) to (4.17) and the equations 

(4.9a) to (4.9h) for the eight interface fluxes; fourteen unknowns are 

evaluated. 

C. Development of Coefficients 

An example for evaluating the coefficient will be given. 

Upon substituting the value of g(x,y) and in equation (4.9) 
3*20 

and integrating over the node volume the expression for the coefficient 

a2o can be written as follow: 

*20 - - T '"'̂ '40> »02 4.18 

where 

 ̂-g 1 -g 2 1 -g 4 1 -g 2 1 -g 4 
\ - (*o + 3 ̂ 20" + 5 + T *02" + T *04" ) 

The coefficients â  represent the neutron energy group g and are 

assumed known from a previous iteration in the numerical solution. The 
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parameter Og are derived from the material properties of the node as 

shown in Chapter III. Therefore, the term is also assumed known 

from the previous iteration. By adding the equations (4.9a), (4.9b), 

(4.9e) and (4.9f) and then subtracting the equations (4.9c), (4.9d), 

(4.9g) and (4.9h), the coefficient &q2 can be written as 

3 2,8 4 8 4 
°02 •4" 'âV - SW " '20 72 4.19 

where 

?! - F* + - F̂  

- (F̂  ̂+ F̂ )/2 - U(x,y)dy/ rdy 
J -2/ J -J/ 

T TL TR r'' r'' 
F - (F + F )/2 - U(x,y)dx/ dx 

J -17 J -n 

F̂  - (F̂  ̂+ F̂ )/2 - p(x,y)dy/ rdy 
J -1/ J -1/ 

B BL BR 
F - (F + F )/2 - U(x,y)dx/ dx 

J - n  J - r i  

R T L B 
F , F , F , and F are assumed known from a previous iteration. Upon 

substituting the value of aQ2 in equation (4.18) and rewriting the 

equation for a.2Q one has 

3 , 8 _ 4 r 2 2̂  16 4 
'20 - 4(q2 ̂  ,2)(̂ 1 • + 5, . ) - 15304" 

2 2 
- —J/ Â ) 4.20 
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Similarly the remaining 13 coefficients were evaluated and are listed 

as follows: 

3 , 8 _ 4 , 2 2. 16 4 
2̂ - + ,2,(̂ 1 - ÏSV"" + 5, . ) -

2 2 ,  ,  
- g? 4.21 

1 372 

'03 - - T̂TW > 

1 37, + 

1 672 + ?̂ A21 

'12 -2< ' 

o 
1 *̂̂ 2  ̂*̂ 12 

'21 " 2* .3 + 4.,2 ' 

\o " - F ) - 2(â 2?y - )) 4.26 

0̂1 " • 2(*2i"9̂  - 6*03"̂ )) 4.27 

673 -

- ( 3 Ô ) 4.28 
 ̂ 6(qy3 + ut)^)  

673 +  

a --( r r ) 4.29 
6(r ju^ + VT)^) 

"11 " ̂(''4 - 3̂ 31̂  ̂- 3.;,,̂ )̂ 4.30 
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where 

- - .  
- ̂  go v'4 ̂ 

1 ,  R  T L B S  2  8  2  1 2  4  
aQ - -(F + F + F + F - - -â .̂. - —â r̂, 

12 4 
-5*04' ) 4.33 

L R TR TL BR BL 
- y ^  =  F  -  F  " F  - F  + F  - F  

RT TL LB BR RB TR LT BL 
Y2 " F - F + F +F - (F + F + F + F ) 

RT TR „LB BL _RB TL LT BR̂  
• y ^  " " F  + F  + F  + F  -  ( F  + F  + F  + F )  

Similarly, the expressions for the coefficients of the polynomials for 

the second, third, and fourth group were derived. 

D. Interface Condition 

From the diffusion theory condition of the continuity of flux, 

î,j " -̂ i+l.j 4.34 
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must be applied at any interface as shown in Figure 4.2. The fluxes 

<f)̂  j and j are the average fluxes and are evaluated using the 

polynomial constants of node (i,j) and (i+l,j) respectively. 

The interface current condition between the two nodes as shown in 

Figure 4.2 is based on the average fluxes. The net current, J, at any 

interface can be defined as 

•— D 
8̂ (x,y) 

dx 
4.35 

where 

D = Diffusion coefficient 

The average value of current is determined by first determining the 

average flux and than differentiating it with respect to the direction, 

i.e. 

3(J^(x,y)dy/ Jdy) 
-D 

d(f> 

dx 
-D 

dx 
4.36 

Using the property of the continuity of current at the interface, 

the average flux for the new iteration will be evaluated. Therefore, 

'i.j 

From Figure 4.2 

- D. 
i.j dx 

-D 
9̂ i+l,j 

x-r?i 
i+lj ax 

4.37 

4.38 

x-%i+l 

where j and 0̂ +̂  j are the diffusion coefficients of node (i,j) and 

node (i+l,j) respectively. The fluxes j and j are the average 



www.manaraa.com

Figure 4.2. Assumed flux profile at thé interface 



www.manaraa.com

38 

fluxes calculated using the constants of polynomial of node (i,j) and 

node (i+l,j) respectively. 

Using the finite difference approximation, from equations (4.35) 

and (4.37) one has 

- -...0' 

where 

j - Average flux evaluated at node interface using the 

properties of node (i,j) 

5̂̂  j - Average flux evaluated at distance 6̂  j away from node 

interface using the properties of node (i,j) 

#1+2 j - Average flux evaluated at node interface using the 

properties of node (i+l,j) 

j = Average flux evaluated at distance 6̂ -̂̂  j away from node 

interface using the properties node (i+l,j) 

6 - Distance parameters 

From equations (4.34) and (4.39), j at the node interface can be 

evaluated to be 

°i+l.ĵ i,ĵ i+l.j + Di,ĵ i+l,ĵ i,j , _ 
— 4.40 

°i,j®i+i,j + °i+i,ĵ i,j 
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E. Boundary Conditions 

A concept of "extrapolation distance" is used to evaluate the flux 

at the boundary (14,29). The reactor extrapolation distance is a 

mathematical condition that implies the flux vanishes at the 

extrapolated distance beyond the edge of the free surfaces and can be 

expressed as follows: 

d̂  
D — 4.41 

dx 

where 

D/r - extrapolation distance; cm. 

The value of r can be evaluated either using the albedo boundary 

condition concept (14,29) or from the transport theory (30). In most 

cases the extrapolation distance is small compared to the size 

of the reactor so the flux is assumed to vanish at the core boundary. 

F. Source Interface Conditions 

In one-dimensional geometry a plane source is positioned at the 

interface of two adjacent nodes. The source position is identified by 

the node (i) as shown in Figure 4.3. In the case of two-dimensional 

geometry a crucifix "+" shape source which represents intersecting 

source planes, is simulated as shown in Figure 4.4. Each wing of the 

source extends across one half node. The source position is identified 
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Figure 4.3. Source geometry for one-dimensional code 
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Figure 4.4. Source geometry for two-dimensional code 
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by the node (i,j) as shown in Figure 4.4. 

In the case of a detector adjoint function, a real and an imaginary 

part of the fast flux and an imaginary part of the thermal flux are 

treated the same as the static flux calculation as explained above. 

But the real part of the thermal flux is evaluated using the Green's 

function condition at the source interface. 

From Figure 4.4 

8̂ i+l,j 

- s 

°i,j '— " Di,j+i : - S 4.44 

- "l+l.J - s 4.45 
oy ay 

where 

D - Diffusion coefficient 

<f> — Average flux at the interface from the previous iteration 

and S is the source strength and has units of neutrons/cm̂ -sec 

Since the solutions of equations (4.42), (4.43), (4.44) and (4.45) 

will be parallel, only the flux from equation (4.42) will be developed. 

For simplicity, let 

D(i.j) - Dp 
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D(i+l,j) - Dq 

(̂i+l.j) -

But at the interface 

 ̂ 4.46 

Using the properties of the finite difference approximation, 

equation (4.42) will be 

»p<—5—> - V-' - ̂ 

SVp + Dp VP ̂ °qVq 

' vTTv^ 

The fluxes and are the average fluxes evaluated at some distance 

gp and gq respectively away from the node interface based on the 

respective node properties. 

G. Convergence Criteria 

The relaxation method as described in reference (31) can be used 

for the polynomial nodal model to speed up the convergence as 

+ (l.w)f(k-l) 4.49 

where 

(̂k-1) _ Average value from the previous iteration,(k-1) 
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- Average value evaluated for the current iteration (k) 

- New updated average value to be used in the evaluation 

of constants for iteration (k) 

w The Relaxation parameter 

k - Iteration number 

The speed of convergence will depend on the relaxation parameter, 

w. If the relaxation parameter, w, is greater than unity, it is called 

over-relaxation and if it is less than unity, it is called 

under-relaxation. The relaxation method was applied to the following 

parameters : 

1. The coefficients of the polynomial, e.g.. 

_ â jC'̂ '̂ w + (l-w)aij(k-l) 4.50 

2. The average flux at the interface conditions 

4.51 

3. The neutron source 

s(k) _ s('k)w + (l-w)E(k-l) 4.52 

where 
N G 

S 4.53 
N 

i — Number of node 

g - Energy group in node i 

N - Total number of nodes 
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G - Total number of energy groups 

Av — Volume of node i 

tj> - Average flux of energy group g in node 1 

Benghanam (32) found that the interface relaxation parameter 

governed the oscillation of the eigenvalue. He also suggested that the 

interface relaxation parameter should be under relaxed to prevent the 

oscillation at low iteration numbers and that the source relaxation 

parameter should be over relaxed in order to increase the convergence 

of the system. He derived a set of relaxation parameters which were 

used to speed up the convergence process. For this dissertation, these 

values were used. No attempt was made to obtain a new set of 

relaxation parameters for the convergence enhancement. 

At the end of each iteration the convergence value was calculated 

using the following equation 

° (1 - ''1 

1 
2 

€ — 

S Av 

< l.E-8 4.54 
NG 

where 

€ — Error term of the flux between two iterations 

G " Number of energy group 
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0 - Average flux of energy group g in node i 

N — Number of nodes 

Av — Volume of node 

k - Iteration number 
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V. ANALYSIS OF RESULTS 

A. Analysis of Results of the 

One-Dimensional Two-Energy Group Computer Code 

A one-dimensional two-energy neutron group computer program was 

developed to calculate the static flux and the frequency dependent real 

and imaginary detector adjoint functions based on the polynomial nodal 

technique as explained in Chapters III and IV. The flux in each node 

is defined by a fourth order polynomial. This computer code is called 

0NED2G. A flow chart of 0NED2G is given in Figure 5-1. 

The steady state fast and thermal fluxes were calculated using 

0NED2G for the Iowa State University UTR-10 reactor. The cross 

sections used in the solutions were those calculated by Al-Ammar (11) 

and Huang and Danofsky (23) and are listed in Table 5.1. The 

nodalization used for the UTR-10 to calculate an eigenvalue using the 

0NED2G code is shown in Figure 5-2. The thermal flux calculated using 

0NED2G is plotted as shown in Figure 5-3. The eigenvalue, 

obtained using 0NED2G is 0.9994 which is 0.1% less than the value 

obtained using the analytical solution (11). 

The real and imaginary components of the detector adjoint function 

for the UTR-10 reactor were calculated using 0NED2G. The nodalization 

used to calculate the Green's function for the UTR-10 reactor is shown 

in Figure 5.4. The Green's function was calculated for a frequency of 

10 rad/sec. A frequency of 10 rad/sec. was chosen because it is within 
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jure 5.1. Flow chart used in the nodal model computer codes 



www.manaraa.com

South South Central North North 
graphite core graphite core graphite 
reflector tank reflector tank reflector 

I I I I I I I I I I I I 
0. 15. 30. 37.5 45. 60. 75. 90. 97.5 105. 120. 135. 

Distance (cm) 

Figure 5.2. One-dimensional geometry of the UTR-10 reactor used in eigenvalue calculation 
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Figure 5.4. One-dimensional geometry of the UTR-10 reactor used in Green's function calculation 
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the plateau region of the global response, i.e., the zero power 

transfer function. The detector was positioned at 37.5 cm, in the 

middle of the south fuel tank region. Figure 5.5 presents a comparison 

of the detector adjoint functions obtained from the analytical solution 

and the nodal model method solution. It was expected that the 

perturbation located in the fuel region will generate a higher 

amplitude signal compared to the signal generated in the graphite 

region. This is obviously due to the neutron multiplication process in 

the fuel region which amplifies the signal. The real thermal detector 

adjoint function obtained using the 0NED2G code peaked approximately 2% 

higher near the detector region compared to the analytical solution 

(11). 

The currents at both sides of the node interface were calculated 

using the polynomials of the respective node. As expected from the 

required continuity of currents, the currents on both sides of the node 

were within + 0.5% of the average value at the interface. The 

difference of the derivatives at the source was 2% higher than the 

input value of 1. 

The phase angle of the detector adjoint function obtained using the 

0NED2G code and the analytical solution (11) are compared in Figure 

5.6. The phase angle is defined as the arctangent of the ratio of the 

imaginary to real parts of the detector adjoint function. The phase 

angle varies from a minimum of -3.33 to a maximum of -3.41 rad. As 

expected, the relative value of the imaginary component compared to the 
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real component of the detector adjoint function gets smaller as the 

detector location is approached. The absolute value of the phase 

angles are greater than 180 degrees. This is because the perturbation 

term is taken as positive rather than negative as used by Pazsit 

and Analytis (13) in the development of the Green's functions. The 

phase angles obtained using the 0NED2G code were within 2% of the 

values obtained using the analytical solution (11). An enlarged scale 

for the phase angle in Figure 5.6 is used to illustrate the shape. 

B. Analysis of Results of the 

Two-Dimensional One-Energy Group Computer Code 

A computer code TWODIG was developed to calculate the one-energy 

group static flux and the frequency dependent real and imaginary 

detector adjoint function. The flow chart of the TWODIG code is 

similar to the flow chart for the 0NED2G code. The TWODIG computer 

code was benchmarked against the EXTERMINATOR computer code (12) and 

the analytical solution. One energy group cross section data were 

obtained from Duderstadt and Hamilton (14) and are listed in Table 

5.2, A reactor size of 200 cm x 200 cm was chosen. 

In the EXTERMINATOR computer code (12), a node size smaller than 

the diffusion length is recommended. Since the diffusion length is on 

the order of 4 to 5 cm, a large number of nodes will be required. 

Therefore, a diffusion coefficient was arbitarily chosen such that the 

diffusion length did not exceed the maximum node size of 20 cm. This 
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reduced the size of the problem to be executed using the EXTERMINATOR 

computer code. No such restrictions are applicable to the nodal model 

technique. 

An eigenvalue problem for a 200 cm x 200 cm homogenous subcritical 

reactor was executed. The eigenvalue; calculated by TWODIG was 

0.8557 which is ,01% less than the eigenvalue of 0.8558 obtained from 

an analytical solution. The nodalization used to perform the 

eigenvalue calculation using TWODIG is as shown in Figure 5.7. The 

coefficients of the polynomials obtained for each node were stored in a 

file so they could be used later to calculate the static flux as a 

function of position. 

The detector adjoint function for this subcritical homogenous 

reactor was calculated using TWODIG. The nodalization used to obtain 

the Green's function using TWODIG is shown in Figure 5.8. The heavy 

lines in Figure 5.8 represents the source planes. A frequency of 10 

rad/sec was chosen because it is within the plateau region of the 

global response, i.e., the zero power transfer function. The source, 

10 cm X 10 cm, was positioned at the center of the core (100 cm, 100 

cm). Figures 5.9 and 5.10 are the surface plots of the real and 

imaginary detector adjoint function obtained from TWODIG. The thermal 

detector adjoint function peaked at the source as expected. 

Using the EXTERMINATOR code, the real part of the detector adjoint 

function was calculated at several locations along the center of the 

core. Similarly, using equation (3.25); an analytical solution for the 
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Figure 5.9. Surface plot of the real detector adj oint function 
for the detector located in the center of the 
homogenous (200 cm x 200 cm) reactor 
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Negative of the imaginary detector adjoint function 
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Figure 5.10. Surface plot of the imaginary detector adjoint 
function for the detector located in the center of 
the homogenous (200 cm x 200 cm) reactor 
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detector adjoint function; ̂ (x ,x ,y ,y ,«), was calculated for the 
d p d p 

same locations. The values obtained from the analytical solution and 

from the EXTERMINATOR computer code were within 1% of each other. 

The detector adjoint function obtained using TWODIG was normalized 

to the values obtained from the analytical solution and is plotted as 

shown in Figure 5.11 across the core at y-100 cm. The values obtained 

using TWODIG were found to be less than 1% greater at 20 cm away from 

the source region and about 3% greater closer to the source compared to 

the analytical solution and the values obtained from the EXTERMINATOR 

code. 

The average value of neutron current based on the polynomials on 

the left node of the interface and the average value of current based 

on the right node of the interface are calculated by the code. The 

currents at the interface matched within 1% of the average value at the 

interface. Figure 5.12 shows the continuity of the current of the real 

component of the detector adjoint function across the core in the y 

direction at various x-locations. Figure 5.13 shows the discontinuity 

in current at the detector position. No discontinuity in the current 

was observed in the case of the imaginary component of the detector 

adjoint function. 

Using the GPLOT computer code, as shown in equation (3.6), x- and 

y- components of the detector response and the phase angles at several 

core locations were calculated. The GPLOT computer code was developed 

to calculate the detector response using the coefficients of the 



www.manaraa.com

TWODIG solution 
0.9 

Analytical solution 

0.8 

0.7 

0 .6  

g 0.5 
o 
c 

0.4 

0 .0  

0 .  20. 40. 60. 80. 100. 120. 140. 160. 180. 200. 

DISTANCE (cm) 
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polynomial for the static flux and the detector adjoint function 

generated by the TWODIG computer code. GPLOT also calculates the 

current in the x- and y- directions for the static flux as well as the 

real and the imaginary parts of the detector adjoint function. The 

phase angle is calculated as the arctangent of the ratio of the 

imaginary to the real parts of the solution. The quadrant of the phase 

angle can be determined from the positive or negative sign of the real 

and the imaginary part. 

The detector adjoint function for the 8 cm x 8 cm source located 

in the center of this reactor was calculated using TWODIG. The values 

of the detector adjoint function obtained were smaller by a factor of 

0.8, compared to the values obtained for the same reactor using a 10 cm 

X 10 cm source located in the center of the core. The later problem 

required a larger number of iterations to converge. As the source size 

was reduced further, a convergence problem was encountered. 

C. Analysis of Results of the 

Two-Dimensional Two-Energy Group Computer Code 

The computer code TWODIG was modified to calculate the two-energy 

group static flux and the frequency dependent real and imaginary 

detector adjoint function. This computer code is called TW0D2G. The 

flow chart of TW0D2G is similar to the flow chart for 0NED2G. 
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The code was benchmarked against the EXTERMINATOR computer code 

using the two-energy group cross sections for the UTR-10 reactor as 

listed in Table 5.3. The nodalization used to perform an eigenvalue 

calculation using TW0D2G is shown in Figure 5.14. The eigenvalue; 

of 1.003 obtained using TW0D2G is within 0.05% the value 

obtained using the EXTERMINATOR computer code. The solution for the 

thermal-flux, calculated by the computer code TW0D2G and the 

EXTERMINATOR computer code, across the reactor (from south to north) 

along the center line of the reactor is shown in Figure 5.15. The 

relative value of the thermal flux in the UTR-10 reactor calculated by 

the TW0D2G computer code was within 1% of the value calculated by 

EXTERMINATOR. 

An eigenvalue problem was executed using a 60 cm x 60 cm 

subcritical homogenous reactor. Two-energy group cross sections, as 

listed in Table 5.4, were obtained from the ANL benchmarked cross 

section data book (33). The nodalization used to perform the 

eigenvalue calculation using the TW0D2G code is shown in Figure 5.16. 

From the TW0D2G computer code, the eigenvalue of the reactor was found 

to be 0.8596 which is 0.05% higher compared to the value of 0.8593 

obtained from the analytical solution. 

The detector adjoint function was calculated for a frequency of 

10 rad/sec using a 6 cm x 6 cm source positioned in the center of the 

core. The nodalization diagram used .to calculate the detector adjoint 

function is shown in Figure 5,17. The heavy lines in Figure 5.17 
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eigenvalue calculation 
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represent the source planes. The thermal detector adjoint function 

peaked in the center as shown in Figure 5.18. The real and imaginary-

components of the fast detector adjoint function are shown in Figures 

5.19 and 5.20. The imaginary thermal detector adjoint function is 

plotted in Figure 5.21. 

The average current based on the polynomials on the left node of 

the interface and the average value of current based on the right node 

of the interface are calculated by the code. The currents of the real 

components of the detector adjoint function at the interface matched 

within 1% of the average value at the interface. Figure 5.22 shows the 

continuity of the current of the real thermal detector adjoint function 

across the core in the y direction at various x-locations. Figure 5.23 

shows the discontinuity in the current of the real thermal detector 

adjoint function at the detector position as expected. 

The current of the imaginary fast and thermal detector adjoint 

function on both sides of the interface varied + 2% from the average 

value at the interface. No discontinuity in the current was observed 

in the case of the fast real and imaginary and thermal imaginary 

components of the detector adjoint function at the detector location. 
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Figure 5.18. Surface plot of the thermal real detector adjoint 
function for the detector located in the center of 
the homogenous (60 cm x 60 cm) reactor 
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Figure 5.19. Surface plot of the fast real detector adjoint 
function for the detector located in the center of 
the homogenous (60 cm x 60 cm) reactor • 
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Negative of the imaginary detector adjoint function 
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Figure 5.20. Surface plot of the fast imaginary detector 
adjoint function for the detector located in the center 
of the homogenous (60 cm x 60 cm) reactor 
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Figure 5.21. Surface plot of the thermal imaginary detector 
adjoint function for the detector located in the center 
of the homogenous (60 cm x 60 cm) reactor 
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Figure 5.22. Neutron current across the core in y-direction at various x-locations for the 
detector located in the center of the homogenous (60 cm x 60 cm) reactor 
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The phase angle for the frequency of 10 rad/sec was calculated 

using the zero power transfer function which is shown by Uhrig (15) as 

follows : 

'I -

6 . 1  
-— 

Afl-k)  ̂
\l-K(l-f)/ 

+ 1 

where 

•I - neutron life time, sec 

The Neutron life time, /, is calculated using the following 

equation, as shown by Duderstadt and Hamilton (14) 

^ - (•  
1 + 

- ) ( •  

2̂ 
6 . 2  

where 

O O 
L » Diffusion Area, cm 

D 

% 

9 9 
B - Geometric buckling,cm" 

a b 

where a and b are the dimensions of the reactor. Substituting the 

value of a, b, Ŝ , V2 and d in the equation (6.2) yields 

5.5 X 10' sec 
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Substituting the value of /, K, and u> the phase angle of the 

zero power point reactor will be 0.2 degrees. 

The phase angle calculated by the TW0D2G computer codes varied 

from 0.2 degrees near the source to 0.4 degrees away from the source. 

These values are well within the range of the phase angle value 

calculated using the zero power transfer function. 
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Table 5.1 

Cross section parameters for the one-dimensional 

UTR-10 reactor geometry 

Fuel Region 

Energy 
Group 

D cm cm-1 yZg cm-1 2i.2 cm-•1 Trans. 
Buckling 

1--Fast 1.4214 .19626E-2 .18663E-2 .34129E-•1 .216E-2 

2 -Thermal .23158 .52410E-2 .76407E-1 .216E-2 

Graphite Region 

1' -Fast 1,1529 .53263E-8 0. .28736E-2 .216E-2 

2 •Thermal .99181 .30661E-4 0. .216E-2 

One-group delayed neutron fraction p - .0065 

Decay constant - 0.1 sec"̂  

Table 5.2 

Cross section parameters for the homogenous 

(200 cm X 200 cm) reactor 
* 

Energy D cm cm-1 i/Zg cm-1 Ẑ _2 cm-1 Trans. 
Group Buckling 

1-Thermal 61.3 .1532 .157 .34129E-1 0. 

One-group delayed neutron fraction p - .007 

Decay constant - 0.1 sec"̂  
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Table 5.3 

Cross section parameters for thé two-dimensional 

UTR-10 reactor geometry 

Fuel Region 

Energy 
Group 

D cm cm-1 i/Zg cm-1 cm-•1 Trans. 
Buckling 

1-Fast 1.406 .1976E-2 0. .3425E-1 .llE-2 

2-Thermal .2230 .5339E-1 .7802E-1 .llE-2 

Graphite Region 

1-Fast 1.165 0. 0. .2526E-2 .llE-2 

2-Thermal .9915 .2013E-3 0. .llE-2 

One-group delayed neutron fraction p - .0065 

Decay constant - 0.1 sec"̂  

Table 5.4 

Cross section parameters for the homogenous 

(60 cm X 60 cm) reactor 

Energy D cm cm-1 i/Zg cm-1 1̂-2 cm-1 Trans. 
Group Buckling 

1-Fast 1.5 .01 0.2 0. 0. 

2-Thermal .4 .08 .135 0. 0. 

One-group delayed neutron fraction - .0065 

Decay constant - 0.1 sec'̂  
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VI. CONCLUSIONS 

The purpose of this research was to investigate the applicability 

of a polynomial nodal model technique to the calculations of the real 

and the imaginary parts of the detector adjoint function. Models were 

developed using one-dimensional two-energy neutron groups, 

two-dimensional one-energy neutron group and two-dimensional two-energy 

neutron groups approximations. It has been demonstrated that the 

static flux and the complex detector adjoint function as well as the 

detector response can be obtained as a function of position using nodal 

techniques. From the analysis of the results as discussed in Chapter 

V, it is concluded that the nodal model technique can be used to 

calculate the detector adjoint function and the phase angle. 

The phase angle and the magnitude of the detector adjoint functions 

for a frequency of 10 rad/sec were calculated using the two-energy 

group computer code 0NED2G for a neutron detector located in the middle 

of the south core tank of the Iowa State University UTR-10 reactor in 

one-dimensional geometry. The real detector adjoint function obtained 

using the 0ND2G code peaked approximately 2% higher near the detector 

region compared to the values obtained from the analytical solution. 

The currents on both sides of the node interface were within +0.5% of 

the average value at the interface. The phase angles were within 2% of 

the values obtained from the analytical solution. 
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Using the one-energy group computer code TWODIG, the magnitude of 

the frequency dependent detector adjoint function and the phase angle 

were calculated for the detector located in the center of a 200 cm x 

200 cm homogenous reactor. The real part of the detector adjoint 

function was compared with the results obtained from the EXTERMINATOR 

computer code as well as the analytical solution based on a double sine 

series expansion using the classical Green's Function solution. The 

values were found to be less than 1% greater at 20 cm away from the 

source region and about 3% greater closer to the source compared to the 

values obtained from the analytical solution and the EXTERMINATOR 

code. The currents at the node interface matched within 1% of the 

average value at the interface. The phase angle varied from 0.1 

degrees to 0.4 degrees compared to 0.2 degrees calculated using the 

point reactor zero power transfer function. 

A computer code TW0D2G was used to solve for the two-energy group 

detector adjoint function and the phase angle for the detector located 

in the center of a 60 cm x 60 cm homogenous reactor. An analytical 

solution based on a double sine series expansion using the classical 

Green's functions solution was developed. It was found that a large 

number of terms in the series were required for convergence, and in 

some cases(near the source) convergence was not possible for even a 

very large number of terms. The result seems to follow the expected 
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behavior of the Green's functions, however. The phase angle calculated 

using TW0D2G varied from 0.2 degrees to 0.4 degrees compared to 0.2 

degrees calculated using the point reactor zero power transfer 

function. 
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VII. SUGGESTIONS FOR FUTURE WORK 

The following recommendations are suggested to improve the 

nodalization model technique: 

1. A set of relaxation parameters developed by Benghanam (32) was 

used in this study. An algorithm needs to be developed to 

enhance the convergence of the system. 

2. A criterion needs to be developed for a selection of the node 

size. From a sensitivity study of the node size, it was found 

that for convergence of the system, a fewer number of 

iterations were required when the node sizes near the boundary 

were kept large compared to the node size at the center. 

Similarly, a criterion needs to be developed to determine the 

source plane size for the source location away from the 

center. 

3. An application of the nodal model method to a 

three-dimensional problem needs to investigated. 

4. From the analysis of results, it was found that the average 

currents of the imaginary parts of the adjoint function did 

not match as well as the average currents of the real parts of 

the detector adjoint function at the interface. A better 

technique for convergence criteria needs to be developed. 
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